心肺停止傷病者の各種状況下における胸骨圧迫の有効性に関する研究

帝京大学医学部・医療技術学部
坂本 哲也 林 栄太郎
岩田 和博 山本 茂 仁科 直 高梨 利満
酒本 瑞姫 品川 頼之 成川 憲司
目次

1. 【背景】…………………………………………………………………………………1
2. 【目的】…………………………………………………………………………………1
3. 【調査方法】3-1. 使用資器材………………………………………………………2
 3-2. 方法……………………………………………………………………………4
4. 【結果】4-1. 基本統計量……………………………………………………………7
 4-2. 音声ガイド付き胸骨圧迫センサー未使用時、傷病者背面状況別に
 胸骨圧迫の平均深度に有意差があるか検定した結果について 　……10
 4-3. 音声ガイド付き胸骨圧迫センサー使用時、傷病者背面状況別に
 胸骨圧迫の平均深度に有意差があるか検定した結果について 　……14
 4-4. 傷病者背面状況別音声ガイド付き胸骨圧迫センサー未使用と
 使用の胸骨圧迫の平均深度に有意差はあるか検定した結果について …17
5. 【考察】…………………………………………………………………………………21
6. 【課題】…………………………………………………………………………………22
7. 【結語】…………………………………………………………………………………22
文献…………………………………………………………………………………23
1. 【背景】

救急現場ではおよそ10人に1人（平成21年中、9.9％）は重症傷病者であり、心肺蘇生法が必要となる傷病者もこの内に含まれる。

AHA (American Heart Association 以下、AHAとする) ガイドライン2010において“効果的な胸骨圧迫を提供するには、強く速く押すことである。成人の胸骨圧迫は少なくとも2インチ/5cmの深さで1分間に少なくとも100回行うことが合理的である（Class IIa, LOE B）”とある。日常的に心肺蘇生法を行う者にとってはその基本手技やガイドライン等は認識されていると考えられるが、認識していいても胸骨圧迫や人工呼吸はどこでも全く同じように、つまり傷病者背面下状況（以下、状況とする）によらずに、どこでも同じように「強く押す」胸骨圧迫を実施することができるのか。

本研究では、特に胸骨圧迫について、状況によって有効性に有意差があるのではないかと考え、検証を行うこととした。

2. 【目的】

効果的な心肺蘇生法を行うには、AEDの使用を含めできるだけ早期から十分な強さとテンポの胸骨圧迫が絶え間なく行われることが極めて重要であると指摘されている。

救急現場における心肺停止傷病者の置かれている状況は様々である。カーペッド、高、ベッド、ストレッチャーなどの傷病者の各種背面下状況によっては、救急隊員の行う胸骨圧迫の有効性に差異が生じているとも考えられる。そこで本研究は、各種傷病者環境下における胸骨圧迫の有効性について検証することを目的とする。尚、本研究における有効性とは胸骨圧迫の深度から検証するものとした。
3. 【調査方法】

3-1. 使用資器材

①ベッド
（マット厚さ13cm、全体高さ55cm：PARAMOUNT社製）
②布団（厚さ5cm、綿・アクリル：市販）
③毛布（厚さ5mm、アクリル100％：市販）
④敷（厚さ6cm、い草：市販）
⑤カーペット（厚さ5mm：市販）
⑥ストレッチャー
（スカッドメイトモデル9304：ファーノジャパン社製）
⑦サブストレッチャー
（コンビネーションモデル107-C：ファーノジャパン社製）
⑧バックボード
（ハイテクバックボード2010：ファーノジャパン社製）
⑨CPRボード（HUDSON RCI LIFESAVER® CPR Board）（ストレッチャーとベッドに使用）
⑩PC Skill Reporting System®（Laerdal社製）（以下、PCとする）（写真1-1）
（AHAガイドライン2005に準じた設定となっている）
⑪Heart Start MRx®（音声ガイド付き胸骨圧迫センサー接続済み：PHILIPS社製）
（以下、Heart Start MRx®をMRx、音声ガイド付き胸骨圧迫センサーをセンサーとする）（AHAガイドライン2005に準じた設定となっている）
（写真1-2-1）（写真1-2-2）
⑫Resusci-Anne Simulator®（Laerdal社製）（以下、Simulatorとする）（写真1-3）

写真1-1 PC Skill Reporting System®（Laerdal社製）
（Simulatorの胸郭部位を圧迫した際の物理的な深さから胸骨圧迫の深度を測定している）
写真1-2-1 Heart Start MRx®
（音声ガイド付き胸骨圧迫センサー接続済み：PHILIPS社製）

写真1-2-2 音声ガイド付き胸骨圧迫センサー
（センサー内に加速度センサー、圧センサーが内蔵されており、これらの機能によって胸骨圧迫の深さを感知する仕様となっている）

写真1-3 Resusci-Anne Simulator®（Laerdal社製）
写真 1-4 音声ガイド付き胸骨圧迫センサーを Resusci-Anne Simulator に設置

3-2. 方法
（1）傷病者背面状況別に、PC のみを使用した群と、PC と MRx を併用した群にわけた。
（2）被験者は本学救命士コース所属学生で 2 人 1 組になり、5 サイクル毎に交代しながら 10 分間胸骨圧迫を実施した。また、傷病者は成人であるとした。
（3）胸骨圧迫実施者は、センサーを併用した場合は音声ガイダンスに従うこととした。
（4）分析には表計算ソフト Microsoft Excel® (version14.0.5128.5000) を使用した。
（5）検証方法は、t 検定（有意水準 5%、両側検定）で胸骨圧迫の平均深度の差に有意差があるか確認した。尚、各検証結果においてはまず F 検定（有意水準 5%）を行い、分散が等分散か不等分散か確認した後に t 検定を行った。

比較方法は、ストレッチャーにおける胸骨圧迫の平均深度と、それ以外の胸骨圧迫の平均深度を比較検証した。バックボードでの胸骨圧迫の平均深度で比較した理由は、バックボードでの胸骨圧迫の平均深度が、本研究のなかで最も深く圧迫されていると推測されたからである。
（6）サンプルサイズ（n）の決定は、標準偏差 5.182、2 つの群の平均の差を 6.350、検出力を 80% として計算した。必要な n 数に達しなかったデータ（センサーを使用しない場合の運動における胸骨圧迫データ）は、検証外とした。
調査状況（全体風景）

調査状況（ベッド）

調査状況（布団、左奥、カーペット：中央、サブストレッチャー：中央上部）
4. 【結果】
調査状況（サブストレッチャー）

調査状況（バックボード）

4-1. 基本統計量
1. ベッド（表 1-1）
センサー未使用の場合は、調査数 11 組、22 名、胸骨圧迫の平均深度は 43.545 mm、標準偏差は 2.115 であった。
センサーを使用した場合は、調査数 22 組、44 名、胸骨圧迫の平均深度は 41.227 mm、標準偏差は 2.671 であった。
2. 布団（表 1-2）
センサー未使用の場合は、調査数 13 組、26 名、胸骨圧迫の平均深度は 46.692 mm、標準偏差は 3.521 であった。
センサーを使用した場合は、調査数 13 組、26 名、胸骨圧迫の平均深度は 46.231 mm、標準偏差は 2.048 であった。

3. 毛布（表 1-3）
センサー未使用の場合は、調査数 12 組、24 名、胸骨圧迫の平均深度は 44.250 mm、標準偏差は 3.279 であった。
センサーを使用した場合は、調査数 16 組、32 名、胸骨圧迫の平均深度は 44.125 mm、標準偏差は 2.986 であった。

4. 暦（表 1-4）
センサー未使用の場合は、調査数 8 組、16 名、胸骨圧迫の平均深度は 43.000 mm、標準偏差は 1.604 であった。
センサーを使用した場合は、調査数 20 組、40 名、胸骨圧迫の平均深度は 45.300 mm、標準偏差は 5.182 であった。

5. カーペット（表 1-5）
センサー未使用の場合は、調査数 20 組、40 名、胸骨圧迫の平均深度は 45.900 mm、標準偏差は 2.693 であった。
センサーを使用した場合は、調査数 13 組、26 名、胸骨圧迫の平均深度は 46.769 mm、標準偏差は 2.242 であった。

6. ストレッチャー（表 1-6）
センサー未使用の場合は、調査数 27 組、54 名、胸骨圧迫の平均深度は 44.704 mm、標準偏差は 2.250 であった。
センサーを使用した場合は、調査数 24 組、48 名、胸骨圧迫の平均深度は 42.042 mm、標準偏差は 3.316 であった。

7. サブストレッチャー（表 1-7）
センサー未使用の場合は、調査数 17 組、34 名、胸骨圧迫の平均深度は 45.235 mm、標準偏差は 3.251 であった。
センサーを使用した場合は、調査数 19 組、38 名、胸骨圧迫の平均深度は 43.474 mm、標準偏差は 2.144 であった。
8. パックボード（表1-8）
センサー未使用の場合は、測定数20,40名、胸骨側圧の平均深度は47.150mm、標準偏差は3.117であった。
センサーを使用した場合は、測定数14,28名、胸骨側圧の平均深度は46.929mm、標準偏差は2.43であった。

【症状者背中状況及びセンサー未使用/使用別基本統計量】

<table>
<thead>
<tr>
<th>表1-1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>前後未使用</td>
<td>前後使用</td>
</tr>
<tr>
<td>胸骨圧測定点</td>
<td>45.950</td>
<td>46.749</td>
</tr>
<tr>
<td>基準値</td>
<td>0.600</td>
<td>0.522</td>
</tr>
<tr>
<td>中央値 (メジアン)</td>
<td>45.500</td>
<td>47.000</td>
</tr>
<tr>
<td>腹部基準値</td>
<td>0.290</td>
<td>0.290</td>
</tr>
<tr>
<td>バーチャル基準値</td>
<td>0.395</td>
<td>0.395</td>
</tr>
<tr>
<td>分前</td>
<td>2.655</td>
<td>2.242</td>
</tr>
<tr>
<td>前後</td>
<td>-0.185</td>
<td>1.886</td>
</tr>
<tr>
<td>他の</td>
<td>0.220</td>
<td>0.730</td>
</tr>
<tr>
<td>全体</td>
<td>0.015</td>
<td>13.000</td>
</tr>
<tr>
<td>合計</td>
<td>991.000</td>
<td>608.000</td>
</tr>
<tr>
<td>体側数</td>
<td>20.000</td>
<td>10.000</td>
</tr>
<tr>
<td>骨片数 (95%)</td>
<td>1.270</td>
<td>1.270</td>
</tr>
<tr>
<td>胸骨圧測定点の単位 (mm)</td>
<td>46.929</td>
<td>46.929</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表1-2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>前後未使用</td>
<td>前後使用</td>
</tr>
<tr>
<td>胸骨圧測定点</td>
<td>45.950</td>
<td>46.749</td>
</tr>
<tr>
<td>基準値</td>
<td>0.600</td>
<td>0.522</td>
</tr>
<tr>
<td>中央値 (メジアン)</td>
<td>45.500</td>
<td>47.000</td>
</tr>
<tr>
<td>腹部基準値</td>
<td>0.290</td>
<td>0.290</td>
</tr>
<tr>
<td>バーチャル基準値</td>
<td>0.395</td>
<td>0.395</td>
</tr>
<tr>
<td>分前</td>
<td>2.655</td>
<td>2.242</td>
</tr>
<tr>
<td>前後</td>
<td>-0.185</td>
<td>1.886</td>
</tr>
<tr>
<td>他の</td>
<td>0.220</td>
<td>0.730</td>
</tr>
<tr>
<td>全体</td>
<td>0.015</td>
<td>13.000</td>
</tr>
<tr>
<td>合計</td>
<td>991.000</td>
<td>608.000</td>
</tr>
<tr>
<td>体側数</td>
<td>20.000</td>
<td>10.000</td>
</tr>
<tr>
<td>骨片数 (95%)</td>
<td>1.270</td>
<td>1.270</td>
</tr>
<tr>
<td>胸骨圧測定点の単位 (mm)</td>
<td>46.929</td>
<td>46.929</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表1-3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>前後未使用</td>
<td>前後使用</td>
</tr>
<tr>
<td>体側未使用</td>
<td>44.285</td>
<td>44.143</td>
</tr>
<tr>
<td>腹部基準値</td>
<td>0.946</td>
<td>0.742</td>
</tr>
<tr>
<td>中央値 (メジアン)</td>
<td>44.000</td>
<td>44.920</td>
</tr>
<tr>
<td>腹部基準値</td>
<td>0.325</td>
<td>0.288</td>
</tr>
<tr>
<td>分前</td>
<td>10.760</td>
<td>8.917</td>
</tr>
<tr>
<td>前後</td>
<td>0.194</td>
<td>-0.350</td>
</tr>
<tr>
<td>他の</td>
<td>-0.154</td>
<td>-0.694</td>
</tr>
<tr>
<td>全体</td>
<td>12.000</td>
<td>11.000</td>
</tr>
<tr>
<td>合計</td>
<td>721.000</td>
<td>708.000</td>
</tr>
<tr>
<td>体側数</td>
<td>15.000</td>
<td>15.000</td>
</tr>
<tr>
<td>骨片数 (95%)</td>
<td>2.083</td>
<td>1.981</td>
</tr>
<tr>
<td>胸骨圧測定点の単位 (mm)</td>
<td>46.929</td>
<td>46.929</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表1-4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>前後未使用</td>
<td>前後使用</td>
</tr>
<tr>
<td>体側未使用</td>
<td>44.285</td>
<td>44.143</td>
</tr>
<tr>
<td>腹部基準値</td>
<td>0.946</td>
<td>0.742</td>
</tr>
<tr>
<td>中央値 (メジアン)</td>
<td>44.000</td>
<td>44.920</td>
</tr>
<tr>
<td>腹部基準値</td>
<td>0.325</td>
<td>0.288</td>
</tr>
<tr>
<td>分前</td>
<td>10.760</td>
<td>8.917</td>
</tr>
<tr>
<td>前後</td>
<td>0.194</td>
<td>-0.350</td>
</tr>
<tr>
<td>他の</td>
<td>-0.154</td>
<td>-0.694</td>
</tr>
<tr>
<td>全体</td>
<td>12.000</td>
<td>11.000</td>
</tr>
<tr>
<td>合計</td>
<td>721.000</td>
<td>708.000</td>
</tr>
<tr>
<td>体側数</td>
<td>15.000</td>
<td>15.000</td>
</tr>
<tr>
<td>骨片数 (95%)</td>
<td>2.083</td>
<td>1.981</td>
</tr>
<tr>
<td>胸骨圧測定点の単位 (mm)</td>
<td>46.929</td>
<td>46.929</td>
</tr>
</tbody>
</table>
4-2. センサー未使用時、傷病者背面状況別に胸骨圧迫の平均深度に有意差があるか検定した結果について

検定方法は、センサーを使用しない場合の傷病者背面状況における胸骨圧迫の平均深度には、有意な差はないと仮定し t 検定（有意水準 5%、両側検定）を行った。尚、比較する際の 2 つの集団は、パックボードの調査データと、その他の状況の調査データとした。

t 検定に先立ち、F 検定（有意水準 5%）を実施した。尚、センサーを使用しない場合の昼上の調査数は、検出力から不十分であるとし、ここでは検証外とした。

F 検定結果

1. パックボードとベッドは等分散である。
 \[F(19,10) = 2.172, \text{ n.s. } (\text{表 2-1}) \]

2. パックボードと布団は 5%有意で不等分散である。
 \[F(19,12) = 0.783, \text{ p}<.05 \text{ (表 2-2) } \]

3. パックボードと毛布は 5%有意で不等分散である。
 \[F(19,11) = 0.904, \text{ p}<.05 \text{ (表 2-3) } \]

4. パックボードとカーペットは等分散である。
 \[F(19,19) = 1.339, \text{ n.s. } (\text{表 2-4}) \]

5. パックボードとストレッチャーは等分散である。
 \[F(19,26) = 1.919, \text{ n.s. } (\text{表 2-5}) \]

6. パックボードとサブストレッチャーは 5%有意で不等分散である。
 \[F(19,16) = 0.451, \text{ p}<.05 \text{ (表 2-6) } \]
表2-1
F-検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th></th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>43.545</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>4.473</td>
</tr>
<tr>
<td>観測数</td>
<td>20.000</td>
<td>11.000</td>
</tr>
<tr>
<td>自由度</td>
<td>19.000</td>
<td>10.000</td>
</tr>
<tr>
<td>観測された分散比</td>
<td>0.904</td>
<td>0.5063</td>
</tr>
<tr>
<td>P(F<=f)片側</td>
<td>0.407</td>
<td>0.265</td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.003</td>
<td>0.426</td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位[mm]

表2-2
F-検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th></th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>46.692</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>12.397</td>
</tr>
<tr>
<td>観測数</td>
<td>20.000</td>
<td>13.000</td>
</tr>
<tr>
<td>自由度</td>
<td>19.000</td>
<td>12.000</td>
</tr>
<tr>
<td>観測された分散比</td>
<td>0.783</td>
<td>0.307</td>
</tr>
<tr>
<td>P(F<=f)片側</td>
<td>0.433</td>
<td>0.265</td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.168</td>
<td>0.451</td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位[mm]

表2-3
F-検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th></th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>44.250</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>10.750</td>
</tr>
<tr>
<td>観測数</td>
<td>20.000</td>
<td>12.000</td>
</tr>
<tr>
<td>自由度</td>
<td>19.000</td>
<td>11.000</td>
</tr>
<tr>
<td>観測された分散比</td>
<td>0.904</td>
<td>0.5063</td>
</tr>
<tr>
<td>P(F<=f)片側</td>
<td>0.407</td>
<td>0.265</td>
</tr>
<tr>
<td>F境界値片側</td>
<td>0.427</td>
<td>0.168</td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位[mm]

表2-4
F-検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th></th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>45.900</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>7.253</td>
</tr>
<tr>
<td>観測数</td>
<td>20.000</td>
<td>20.000</td>
</tr>
<tr>
<td>自由度</td>
<td>19.000</td>
<td>19.000</td>
</tr>
<tr>
<td>観測された分散比</td>
<td>1.339</td>
<td>0.265</td>
</tr>
<tr>
<td>P(F<=f)片側</td>
<td>0.265</td>
<td>0.168</td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.168</td>
<td>0.451</td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位[mm]

表2-5
F-検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th></th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>44.704</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>5.063</td>
</tr>
<tr>
<td>観測数</td>
<td>20.000</td>
<td>27.000</td>
</tr>
<tr>
<td>自由度</td>
<td>19.000</td>
<td>26.000</td>
</tr>
<tr>
<td>観測された分散比</td>
<td>1.919</td>
<td>0.061</td>
</tr>
<tr>
<td>P(F<=f)片側</td>
<td>0.061</td>
<td>0.426</td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.003</td>
<td>0.451</td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位[mm]

表2-6
F-検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th></th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>45.235</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>10.566</td>
</tr>
<tr>
<td>観測数</td>
<td>20.000</td>
<td>17.000</td>
</tr>
<tr>
<td>自由度</td>
<td>19.000</td>
<td>16.000</td>
</tr>
<tr>
<td>観測された分散比</td>
<td>0.919</td>
<td>0.426</td>
</tr>
<tr>
<td>P(F<=f)片側</td>
<td>0.426</td>
<td>0.451</td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.003</td>
<td>0.451</td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位[mm]
上記のF検定の結果より

・バックボードと布団
・バックボードと毛布
・バックボードとサブストレッチャー

は5%有意で不等分散であり、それ以外の分散は等分散であった。この結果を用いて、t検定（有意水準5%、両側検定）を実施した。

t検定結果

1. バックボードとベッドは5%有意で胸骨圧迫の平均深度に有意差がみられた。
 \[t (29) = 2.045, \ p < .05 \ (表3-1) \]

2. バックボードと布団は胸骨圧迫の平均深度に有意差はみられなかった。
 \[t (23) = 0.382, \ n.s. \ (表3-2) \]

3. バックボードと毛布は5%有意で胸骨圧迫の平均深度に有意差がみられた。
 \[t (22) = 2.074, \ p < .05 \ (表3-3) \]

4. バックボードとカーペットは胸骨圧迫の平均深度に有意差はみられなかった。
 \[t (38) = 2.024, \ n.s. \ (表3-4) \]

5. バックボードとストレッチャーは5%有意で胸骨圧迫の平均深度に有意差がみられた。
 \[t (45) = 2.014, \ p < .05 \ (表3-5) \]

6. バックボードとサブストレッチャーは胸骨圧迫の平均深度に有意差はみられなかった。
 \[t (34) = 2.032, \ n.s. \ (表3-6) \]
表3-1

t-検定: 等分散を仮定した2標本による検定

<table>
<thead>
<tr>
<th>バックボードとベッド</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>43.545</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>4.473</td>
</tr>
<tr>
<td>観測数</td>
<td>20,000</td>
<td>11,000</td>
</tr>
<tr>
<td>プールされた分散</td>
<td>7.906</td>
<td></td>
</tr>
<tr>
<td>仮説平均との差異</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>自由度</td>
<td>29,000</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>3.415</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) 両側</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>t 境界値 両側</td>
<td>1.899</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) lhs</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>t 境界値 lhs</td>
<td>2.045</td>
<td></td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位 [mm]

表3-2

t-検定: 分散が等しくないと仮定した2標本による検定

<table>
<thead>
<tr>
<th>バックボードとベッド</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>46.692</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>12.397</td>
</tr>
<tr>
<td>観測数</td>
<td>20,000</td>
<td>13,000</td>
</tr>
<tr>
<td>プールされた分散</td>
<td>7.906</td>
<td></td>
</tr>
<tr>
<td>仮説平均との差異</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>自由度</td>
<td>23,000</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>0.382</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) 両側</td>
<td>0.353</td>
<td></td>
</tr>
<tr>
<td>t 境界値 両側</td>
<td>1.714</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) lhs</td>
<td>0.706</td>
<td></td>
</tr>
<tr>
<td>t 境界値 lhs</td>
<td>2.068</td>
<td></td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位 [mm]

表3-3

t-検定: 散布が等しくないと仮定した2標本による検定

<table>
<thead>
<tr>
<th>バックボードと毛布</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>44.250</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>10.750</td>
</tr>
<tr>
<td>観測数</td>
<td>20,000</td>
<td>12,000</td>
</tr>
<tr>
<td>仮説平均との差異</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>自由度</td>
<td>22,000</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>2.467</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) 両側</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>t 境界値 両側</td>
<td>1.717</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) lhs</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>t 境界値 lhs</td>
<td>2.074</td>
<td></td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位 [mm]

表3-4

t-検定: 分散が等しくないと仮定した2標本による検定

<table>
<thead>
<tr>
<th>バックボードとカーペット</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>45.900</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>7.253</td>
</tr>
<tr>
<td>観測数</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>プールされた分散</td>
<td>8.483</td>
<td></td>
</tr>
<tr>
<td>仮説平均との差異</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>自由度</td>
<td>38,000</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1.357</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) 両側</td>
<td>0.091</td>
<td></td>
</tr>
<tr>
<td>t 境界値 両側</td>
<td>1.866</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) lhs</td>
<td>0.183</td>
<td></td>
</tr>
<tr>
<td>t 境界値 lhs</td>
<td>2.024</td>
<td></td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位 [mm]

表3-5

t-検定: 等分散を仮定した2標本による検定

<table>
<thead>
<tr>
<th>バックボードとストレッチャー</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>44.704</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>5.083</td>
</tr>
<tr>
<td>観測数</td>
<td>20,000</td>
<td>27,000</td>
</tr>
<tr>
<td>プールされた分散</td>
<td>7.026</td>
<td></td>
</tr>
<tr>
<td>仮説平均との差異</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>自由度</td>
<td>45,000</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>3.128</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) 両側</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>t 境界値 両側</td>
<td>1.679</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) lhs</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>t 境界値 lhs</td>
<td>2.014</td>
<td></td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位 [mm]

表3-6

t-検定: 分散が等しくないと仮定した2標本による検定

<table>
<thead>
<tr>
<th>バックボードとサブストレッチャー</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>47.150</td>
<td>45.235</td>
</tr>
<tr>
<td>分散</td>
<td>9.713</td>
<td>10.566</td>
</tr>
<tr>
<td>観測数</td>
<td>20,000</td>
<td>17,000</td>
</tr>
<tr>
<td>プールされた分散</td>
<td>8.483</td>
<td></td>
</tr>
<tr>
<td>仮説平均との差異</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>自由度</td>
<td>34,000</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1.820</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) 両側</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>t 境界値 両側</td>
<td>1.691</td>
<td></td>
</tr>
<tr>
<td>P(T＜t) lhs</td>
<td>0.078</td>
<td></td>
</tr>
<tr>
<td>t 境界値 lhs</td>
<td>2.032</td>
<td></td>
</tr>
</tbody>
</table>

胸骨圧迫平均深度の単位 [mm]
上記の結果から、センサー未使用時にパックボードにおける時骨圧迫の平均深度と有意差があると確認できたのは、
・ベッド
・毛布
・ストレッチャー
の3種類の状況であった。これらにパックボードでの時骨圧迫の平均深度を含めた4種類の平均深度を深い順に並べると表8の通りとなった。
表8

<table>
<thead>
<tr>
<th>パックボードの使用時</th>
<th>の平均深度 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. パックボード</td>
<td>47.150</td>
</tr>
<tr>
<td>2. ストレッチャー</td>
<td>44.704</td>
</tr>
<tr>
<td>3. 毛布</td>
<td>44.250</td>
</tr>
<tr>
<td>4. ベッド</td>
<td>43.545</td>
</tr>
</tbody>
</table>

4-3. センサー使用時、傷病者横面状況別に時骨圧迫の平均深度に有意差があるか検定した結果について

検定方法は、【結果】IIと同様に、センサーを使用した場合の状況における時骨圧迫の平均深度に有意な差がないと仮定し、t検定（有意水準 5%、両側検定）を行った。尚、比較する際の2つの集団は、パックボードの調査データと、それ以外の状況の調査データとした。
t検定に先立ち、F検定（有意水準 5%）を実施した。

F検定結果
1. パックボードとベッドは5%有意で不等分散である。
 F (13, 21) = 0.829, p < 0.05 （表4-1）

2. パックボードと布団は等分散である。
 F (13, 12) = 1.412, n.s. （表4-2）

3. パックボードと布団は5%有意で不等分散である。
 F (13, 15) = 0.664, p < 0.05 （表4-3）

4. パックボードと布団は等分散である。
 F (13, 19) = 0.220, n.s. （表4-4）
5. パックボードとカーペットは等分散である。
 \[F(13, 12) = 1.177, \text{ n. s. (表 4-5)} \]

6. パックボードとストレッチャーは5%有意で不等分散である。
 \[F(13, 23) = 0.538, \text{ p<.05 (表 4-6)} \]

7. パックボードとサブストレッチャーは等分散である。
 \[F(13, 18) = 1.287, \text{ n. s. (表 4-7)} \]

上記のF検定の結果より
*パックボードとベッド
*パックボードと毛布
*パックボードとストレッチャー
は5%有意で不等分散であった。またそれ以外の分散は等分散であった。この結果を用いて、t検定（有意水準5%、両側検定）を実施した。

t検定結果
1. パックボードとベッドは5%有意で胸骨圧迫の平均深度に有意差がみられた。
 \[t(30) = 6.596, \text{ p<.05 (表 5-1)} \]

2. パックボードと布単は胸骨圧迫の平均深度に有意差はみられなかった。
 \[t(25) = 0.803, \text{ n. s. (表 5-2)} \]

3. パックボードと毛布は5%有意で胸骨圧迫の平均深度に有意差がみられた。
 \[t(28) = 2.832, \text{ p<.05 (表 5-3)} \]

4. パックボードと敷は胸骨圧迫の平均深度に有意差はみられなかった。
 \[t(32) = 1.091, \text{ n. s. (表 5-4)} \]

5. パックボードとカーペットは胸骨圧迫の平均深度に有意差はみられなかった。
 \[t(25) = 0.177, \text{ n. s. (表 5-5)} \]

6. パックボードとストレッチャーは5%有意で胸骨圧迫の平均深度に有意差がみられた。
 \[t(34) = 5.207, \text{ p<.05 (表 5-6)} \]
7. バックボードとサブストレッチャーは5%有意で胸骨圧迫の平均深度に有意差がみられた。

\[t (31) = 4.322, p < .05 \]（表5-7）

【センサー使用時のバックボードと圧力板状況のt検定】

<table>
<thead>
<tr>
<th>バックボードとベッド</th>
<th>バックボードと布団</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>46.929 46.271</td>
</tr>
<tr>
<td>分数</td>
<td>5.918 5.419</td>
</tr>
<tr>
<td>鮮明数</td>
<td>14,000 13,000</td>
</tr>
<tr>
<td>鮮明平均との差異</td>
<td>0.000 0.000</td>
</tr>
<tr>
<td>自由度</td>
<td>25,000 20,000</td>
</tr>
<tr>
<td>P(T<α)片側</td>
<td>0.023 0.020</td>
</tr>
<tr>
<td>P(T<α)両側</td>
<td>0.046 0.040</td>
</tr>
<tr>
<td>胸骨圧迫平均深度の単位（mm）</td>
<td>胸骨圧迫平均深度の単位（mm）</td>
</tr>
</tbody>
</table>

【センサー使用時のバックボードと布団状況のt検定】

<table>
<thead>
<tr>
<th>バックボードとベッド</th>
<th>パッド板と布団</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>46.929 46.271</td>
</tr>
<tr>
<td>分数</td>
<td>5.918 5.419</td>
</tr>
<tr>
<td>鮮明数</td>
<td>14,000 13,000</td>
</tr>
<tr>
<td>鮮明平均との差異</td>
<td>0.000 0.000</td>
</tr>
<tr>
<td>自由度</td>
<td>25,000 20,000</td>
</tr>
<tr>
<td>P(T<α)片側</td>
<td>0.023 0.020</td>
</tr>
<tr>
<td>P(T<α)両側</td>
<td>0.046 0.040</td>
</tr>
<tr>
<td>胸骨圧迫平均深度の単位（mm）</td>
<td>胸骨圧迫平均深度の単位（mm）</td>
</tr>
</tbody>
</table>

【センサー使用時のバックボードと毛布状況のt検定】

<table>
<thead>
<tr>
<th>バックボードとベッド</th>
<th>パッド板と布団</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>46.929 46.271</td>
</tr>
<tr>
<td>分数</td>
<td>5.918 5.419</td>
</tr>
<tr>
<td>鮮明数</td>
<td>14,000 13,000</td>
</tr>
<tr>
<td>鮮明平均との差異</td>
<td>0.000 0.000</td>
</tr>
<tr>
<td>自由度</td>
<td>25,000 20,000</td>
</tr>
<tr>
<td>P(T<α)片側</td>
<td>0.023 0.020</td>
</tr>
<tr>
<td>P(T<α)両側</td>
<td>0.046 0.040</td>
</tr>
<tr>
<td>胸骨圧迫平均深度の単位（mm）</td>
<td>胸骨圧迫平均深度の単位（mm）</td>
</tr>
</tbody>
</table>

【センサー使用時のバックボードとカーペット状況のt検定】

<table>
<thead>
<tr>
<th>バックボードとベッド</th>
<th>パッド板と布団</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>46.929 46.271</td>
</tr>
<tr>
<td>分数</td>
<td>5.918 5.419</td>
</tr>
<tr>
<td>鮮明数</td>
<td>14,000 13,000</td>
</tr>
<tr>
<td>鮮明平均との差異</td>
<td>0.000 0.000</td>
</tr>
<tr>
<td>自由度</td>
<td>25,000 20,000</td>
</tr>
<tr>
<td>P(T<α)片側</td>
<td>0.023 0.020</td>
</tr>
<tr>
<td>P(T<α)両側</td>
<td>0.046 0.040</td>
</tr>
<tr>
<td>胸骨圧迫平均深度の単位（mm）</td>
<td>胸骨圧迫平均深度の単位（mm）</td>
</tr>
</tbody>
</table>

【センサー使用時のバックボードとサブスツレッチャー状況のt検定】

<table>
<thead>
<tr>
<th>バックボードとベッド</th>
<th>パッド板と布団</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>46.929 46.271</td>
</tr>
<tr>
<td>分数</td>
<td>5.918 5.419</td>
</tr>
<tr>
<td>鮮明数</td>
<td>14,000 13,000</td>
</tr>
<tr>
<td>鮮明平均との差異</td>
<td>0.000 0.000</td>
</tr>
<tr>
<td>自由度</td>
<td>25,000 20,000</td>
</tr>
<tr>
<td>P(T<α)片側</td>
<td>0.023 0.020</td>
</tr>
<tr>
<td>P(T<α)両側</td>
<td>0.046 0.040</td>
</tr>
<tr>
<td>胸骨圧迫平均深度の単位（mm）</td>
<td>胸骨圧迫平均深度の単位（mm）</td>
</tr>
</tbody>
</table>
上記の結果から、センサー使用時、パックボードにおける胸骨圧迫の平均深度と有意差があると確認できたのは、
- ベッド
- 毛布
- ストレッチャー
- サブストレッチャー
の4種類の背面状況であった。これによりパックボードでの胸骨圧迫の平均深度を含めた5種類の平均深度を深さ順に並べると表9の通りとなった。

<table>
<thead>
<tr>
<th>センサー使用時の傷病者背面状況別胸骨圧迫の平均深度（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. パックボード</td>
</tr>
<tr>
<td>2. 毛布</td>
</tr>
<tr>
<td>3. サブストレッチャー</td>
</tr>
<tr>
<td>4. ストレッチャー</td>
</tr>
<tr>
<td>5. ベッド</td>
</tr>
</tbody>
</table>

4-4. 傷病者背面状況別センサー未使用とセンサー使用の胸骨圧迫の平均深度に有意差はあるか検定した結果について

検定方法は【結果】II及びIIIの検定方法と同様に、F検定（有意水準5%）を実施後、t検定（有意水準5%、両側検定）を行った。尚、センサー未使用時の疎上の調査数は、検出力から不十分であるとし、ここでは検証外とした。

1. ベッドのセンサー未使用/使用による分散は等分散である。
 \[F(21,10) = 1.596, \, n.s. \]（表6-1）

2. 毛布のセンサー未使用/使用による分散は等分散である。
 \[F(12,12) = 0.338, \, n.s. \]（表6-2）

3. 布団のセンサー未使用/使用による分散は5%有意で不等分散である。
 \[F(15,11) = 0.829, \, p < 0.05 \]（表6-3）

4. カーペットのセンサー未使用/使用による分散は5%有意で不等分散である。
 \[F(12,19) = 0.693, \, p < 0.05 \]（表6-4）
5. ストレッチャーのセンサー未使用/使用による分散は5%有意で不等分散である。
F（23, 26）= 2.172, p < .05 (表6-5)

6. サブストレッチャーのセンサー未使用/使用による分散は等分散である。
F（18, 16）= 0.435, n.s. (表6-6)

7. バックボードのセンサー未使用/使用による分散は5%有意で不等分散である。
F（13, 19）= 0.609, p < .05 (表6-7)

【傷病者背面状況別センサー未使用/使用のF検定】

<table>
<thead>
<tr>
<th>表6-1</th>
<th>F検定: 2標本を使った分散の検定</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベッド</td>
<td></td>
</tr>
<tr>
<td>布団</td>
<td></td>
</tr>
<tr>
<td></td>
<td>実数1</td>
</tr>
<tr>
<td>胸骨圧迫平均深度</td>
<td>41.22</td>
</tr>
<tr>
<td>分数</td>
<td>7.136</td>
</tr>
<tr>
<td>視測数</td>
<td>22,000</td>
</tr>
<tr>
<td>自由度</td>
<td>21,000</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.764</td>
</tr>
<tr>
<td>健康対象平均深度の単位[mm]</td>
<td></td>
</tr>
</tbody>
</table>

【図6-1】F検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th>表6-2</th>
<th>F検定: 2標本を使った分散の検定</th>
</tr>
</thead>
<tbody>
<tr>
<td>カーペット</td>
<td></td>
</tr>
<tr>
<td></td>
<td>実数1</td>
</tr>
<tr>
<td>胸骨圧迫平均深度</td>
<td>41.22</td>
</tr>
<tr>
<td>分数</td>
<td>7.136</td>
</tr>
<tr>
<td>視測数</td>
<td>22,000</td>
</tr>
<tr>
<td>自由度</td>
<td>21,000</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.764</td>
</tr>
<tr>
<td>健康対象平均深度の単位[mm]</td>
<td></td>
</tr>
</tbody>
</table>

【図6-2】F検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th>表6-3</th>
<th>F検定: 2標本を使った分散の検定</th>
</tr>
</thead>
<tbody>
<tr>
<td>ストレッチャー</td>
<td></td>
</tr>
<tr>
<td></td>
<td>実数1</td>
</tr>
<tr>
<td>胸骨圧迫平均深度</td>
<td>41.22</td>
</tr>
<tr>
<td>分数</td>
<td>7.136</td>
</tr>
<tr>
<td>視測数</td>
<td>22,000</td>
</tr>
<tr>
<td>自由度</td>
<td>21,000</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.764</td>
</tr>
<tr>
<td>健康対象平均深度の単位[mm]</td>
<td></td>
</tr>
</tbody>
</table>

【図6-3】F検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th>表6-4</th>
<th>F検定: 2標本を使った分散の検定</th>
</tr>
</thead>
<tbody>
<tr>
<td>サブストレッチャー</td>
<td></td>
</tr>
<tr>
<td></td>
<td>実数1</td>
</tr>
<tr>
<td>胸骨圧迫平均深度</td>
<td>41.22</td>
</tr>
<tr>
<td>分数</td>
<td>7.136</td>
</tr>
<tr>
<td>視測数</td>
<td>22,000</td>
</tr>
<tr>
<td>自由度</td>
<td>21,000</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.764</td>
</tr>
<tr>
<td>健康対象平均深度の単位[mm]</td>
<td></td>
</tr>
</tbody>
</table>

【図6-4】F検定: 2標本を使った分散の検定

<table>
<thead>
<tr>
<th>表6-5</th>
<th>F検定: 2標本を使った分散の検定</th>
</tr>
</thead>
<tbody>
<tr>
<td>バックボード</td>
<td></td>
</tr>
<tr>
<td></td>
<td>実数1</td>
</tr>
<tr>
<td>胸骨圧迫平均深度</td>
<td>41.22</td>
</tr>
<tr>
<td>分数</td>
<td>7.136</td>
</tr>
<tr>
<td>視測数</td>
<td>22,000</td>
</tr>
<tr>
<td>自由度</td>
<td>21,000</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F境界値片側</td>
<td>2.764</td>
</tr>
<tr>
<td>健康対象平均深度の単位[mm]</td>
<td></td>
</tr>
</tbody>
</table>

【図6-5】F検定: 2標本を使った分散の検定

18
上記のF検定の結果より

*毛布
*カーペット
*ストレッチャー
*バックボード

は5%有意で不等分散であり、それ以外の分散は等分散であった。この結果を用いて、t検定（有意水準5%、両側検定）を実施した。

t検定結果

1. ベッドのセンサー未使用/使用による胸骨圧迫の平均深度は5%有意で有意差がみられた。
 \[\text{t (31)} = 2.506, \ p < 0.05 \text{（表7-1）} \]

2. 布団のセンサー未使用/使用による胸骨圧迫の平均深度に有意差はみられなかった。
 \[\text{t (24)} = 0.409, \ n.s. \text{（表7-2）} \]

3. 布団のセンサー未使用/使用による胸骨圧迫の平均深度に有意差はみられなかった。
 \[\text{t (23)} = 0.104, \ n.s. \text{（表7-3）} \]

4. カーペットのセンサー未使用/使用による胸骨圧迫の平均深度に有意差はみられなかった。
 \[\text{t (29)} = 1.004, \ n.s. \text{（表7-4）} \]

5. ストレッチャーのセンサー未使用/使用による胸骨圧迫の平均深度は5%有意で有意差がみられた。
 \[\text{t (40)} = 3.313, \ p < 0.05 \text{（表7-5）} \]

6. サブストレッチャーのセンサー未使用/使用による胸骨圧迫の平均深度に有意差はみられなかった。
 \[\text{t (34)} = 1.939, \ n.s. \text{（表7-6）} \]

7. バックボードのセンサー未使用/使用による胸骨圧迫の平均深度に有意差はみられなかった。
 \[\text{t (32)} = 0.232, \ n.s. \text{（表7-7）} \]
【傷病者背面状況別セッサ未使用/使用のt検定】

表7-1

<table>
<thead>
<tr>
<th>ベッド</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>42.277</td>
<td>43.545</td>
</tr>
<tr>
<td>分数</td>
<td>2.736</td>
<td>4.473</td>
</tr>
<tr>
<td>観測数</td>
<td>21.800</td>
<td>11.000</td>
</tr>
</tbody>
</table>

プールされた分数 2.577
仮想平均との差異 0.000
自由度 3.100

表7-2

<table>
<thead>
<tr>
<th>布団</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>42.331</td>
<td>46.302</td>
</tr>
<tr>
<td>分数</td>
<td>4.192</td>
<td>12.389</td>
</tr>
<tr>
<td>観測数</td>
<td>13.000</td>
<td>13.000</td>
</tr>
</tbody>
</table>

プールされた分数 8.286
仮想平均との差異 0.000
自由度 24.000

表7-3

<table>
<thead>
<tr>
<th>毛布</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>44.125</td>
<td>44.275</td>
</tr>
<tr>
<td>分数</td>
<td>9.456</td>
<td>10.756</td>
</tr>
<tr>
<td>観測数</td>
<td>16.000</td>
<td>12.000</td>
</tr>
</tbody>
</table>

仮想平均との差異 1.23
自由度 23

表7-4

<table>
<thead>
<tr>
<th>カーペット</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>46.769</td>
<td>48.900</td>
</tr>
<tr>
<td>分数</td>
<td>5.026</td>
<td>7.253</td>
</tr>
<tr>
<td>観測数</td>
<td>13.000</td>
<td>20.000</td>
</tr>
</tbody>
</table>

仮想平均との差異 0.000
自由度 29.000

表7-5

<table>
<thead>
<tr>
<th>ストレッチャー</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>42.042</td>
<td>44.704</td>
</tr>
<tr>
<td>分数</td>
<td>10.988</td>
<td>5.063</td>
</tr>
<tr>
<td>観測数</td>
<td>24.000</td>
<td>27.000</td>
</tr>
</tbody>
</table>

仮想平均との差異 0.000
自由度 40.000

表7-6

<table>
<thead>
<tr>
<th>サブストレッチャー</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>43.474</td>
<td>45.235</td>
</tr>
<tr>
<td>分数</td>
<td>4.596</td>
<td>10.566</td>
</tr>
<tr>
<td>観測数</td>
<td>19.000</td>
<td>17.000</td>
</tr>
</tbody>
</table>

仮想平均との差異 7.406
自由度 34.000

表7-7

<table>
<thead>
<tr>
<th>パックボード</th>
<th>変数1</th>
<th>変数2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>45.822</td>
<td>47.150</td>
</tr>
<tr>
<td>分数</td>
<td>5.918</td>
<td>9.713</td>
</tr>
<tr>
<td>観測数</td>
<td>14.000</td>
<td>20.000</td>
</tr>
</tbody>
</table>

仮想平均との差異 0.000
自由度 32.000

| | | |
| | | |
上記の結果から、病者脳の状況別センサー未使用/使用時の胸骨圧迫の平均深度に有意差があると確認できたのは、

・ベッド

・ストレッチャー

の2種類の病者脳の状況において有意差があると確認できた。

この2種類を病者脳の状況別に胸骨圧迫平均深度を表10に示した。

表10

<table>
<thead>
<tr>
<th>センサー未使用</th>
<th>センサー使用</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸骨圧迫平均深度</td>
<td>43.545</td>
</tr>
<tr>
<td>胸骨圧迫平均深度</td>
<td>41.227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ストレッチャー</th>
</tr>
</thead>
<tbody>
<tr>
<td>センサー未使用</td>
</tr>
<tr>
<td>胸骨圧迫平均深度</td>
</tr>
<tr>
<td>ストレッチャー</td>
</tr>
<tr>
<td>センサー使用</td>
</tr>
<tr>
<td>胸骨圧迫平均深度</td>
</tr>
</tbody>
</table>

表10より、センサー未使用時のほうが、使用時よりも、胸骨圧迫の平均深度が深くなっていることがわかる。

5.【考察】

バックボードでの胸骨圧迫は他の状況での胸骨圧迫と有効性（深度）に有意差があり、その状況は、ベッド、ストレッチャー、サブストレッチャー、毛布であった。ベッド、ストレッチャーは病者脳の状況がマットレスのようにやわらかい場所であったからであると考えられる。しかし、サブストレッチャーを毛布は、ベッドやストレッチャーのようなマットレスがあるわけではない。推測とし、サブストレッチャーは胸骨圧迫時に起こるサブストレッチャーの動き（上下の運動）によって、ベッドやストレッチャーと同様の結果になったと考えられるが、毛布と同様、今後さらなる調査・研究が必要であると考えられる。

また、状況毎にセンサー未使用時とセンサー使用時胸骨圧迫平均深度に有意差があったのは、ベッドとストレッチャーである。2つの状況とも、センサーを使用したほうが胸骨圧迫平均深度が浅くなる結果であった。この要因として、1つは、センサーの設定によるものであると推測される。本研究において、胸骨圧迫の有効性は深度から判断するものとしているが、AHAガイドライン2005では胸骨圧迫の深度は1.5から2.0インチ（3.5から5.0cm）の範囲が良いとしている。センサーの設定は、このAHAガイドライン2005に準じた設定になっているため、より深く圧迫するように設定されているわけではない、ということによるものと考
えられる。もう1つの要因は、被験者がセンサーを今回の調査研究で初めて使用したことである。つまり、センサーの厚みに不慣れであり、胸骨圧迫の深度に対する感覚が違ったことによる可能性も考えられる。つまり、デバイスを使うにはそのデバイスを使用するトレーニングが必要ではないかと考えられるのであるが、今後引き続き調査研究が必要であると考えられる。

6.【課題】

バックボードの胸骨圧迫平均深度とサブストレッチャー及び毛布胸骨圧迫平均深度に有意差があった。この原因を今後、調査・研究していく必要がある。

被験者がセンサーを今回の調査研究で初めて使用したこと、つまり、センサーの厚みに不慣れであり、胸骨圧迫の深度に対する感覚が違ったことが、結果へどう影響するのか、今後調査・研究する必要がある。

また、本研究における調査データ数は決して十分であるとはいえず、また使用資器材に不具合があり、調査データ数が状況によりばらつきがでてしまった。本研究をより良い研究結果にするためには、今後さらに調査データのもと研究を進めていく必要があると考えられる。

7.【結語】

今回の研究において、バックボードでの胸骨圧迫と他の状況での胸骨圧迫を比較して、特にベッドやストレッチャーにおいて有効性（深度）に有意差があるということがわかった。

また、センサーは胸骨圧迫の質を管理できるデバイスであり、これはいくつかのリサーチの上に成り立っている。そしてポイズフィードバックという方法は、今後期待されるデバイスであることは疑いのないことであり、今後も引き続き調査・研究していく必要があると思われる。

今後、AHAガイドライン2010に準じて、胸骨圧迫はより深く圧迫することが求められていきと考えられる。その時、本研究でわかったように、状況により胸骨圧迫の有効性（深度）に有意差があることを念頭に置いて実施することが、今後、より効果の有る胸骨圧迫を実施するために必要なことであると考えられる。
(文献)

1) 平成 21 年版 救急・救助の現況

2) Circulation. 2010;122;S685-S705 doi: 10.1161/CIRCULATIONAHA.110.970939
 Part 5: Adult Basic Life Support
 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation
 and Emergency Cardiovascular Care
 Robert A. Berg, Chair; Robin Hemphill; Benjamin S. Abella; Tom P. Aufderheide;
 Diana M. Cave; Mary Fran Hazinski; E. Brooke Lerner; Thomas D. Rea; Michael
 R. Sayre; Robert A. Swor

3) AHA 心肺蘇生と救急心血管管治療のためのガイドライン 2005
 American Heart Association, Inc. (2006)

4) 2009 Jan;80(1):79-82.
 Compression feedback devices over estimate chest compression depth when
 performed on a bed.
 Perkins GD, Kocierz L, Smith SC, McCulloch RA, Davies RP.

5) 2009 May;80(5):546-52.
 The impact of compliant surfaces on in-hospital chest compressions: effects
 of common mattresses and a backboard.
 Noordergraaf GJ, Paulussen IW, Venema A, van Berkom PF, Woerlee PH,
 Scheffer GJ, Noordergraaf A.

6) 2009 May;80(5):540-5.
 Effect of mattress deflection on CPR quality assessment for older children
 and adolescents.
 Nishisaki A, Nysaether J, Sutton R, Maltese M, Niles D, Donoghue A,

7) 「論文が読める！早わかり統計学 臨床研究データを理解するためのエッセンス
 第2版（PDQ Statistics Third Edition）」
 Geoffrey R.Norman, David L.Streiner
 訳：中野 正孝／本多 正幸／宮崎 有紀子／野尻 雅美
 メディカル・サイエンス・インターナショナル（2007）

8) 「検定力分析入門 Rで学ぶ最新データ解析」
 編著：豊田 秀樹
 東京図書（2009）

この研究は（財）救急振興財団の「救急に関する調査研究事業助成」を受けて行ったものである。

23